1. He, Y., Wang, Z., Cui, P., Zou, H., Zhang, Y., Cui, Q., Jiang, Y.: Causpref: causal preference learning for out-of-distribution recommendation. In: Proceedings of the ACM Web Conference 2022, pp. 410–421 (2022)
2. Gao, C., Li, S., Zhang, Y., Chen, J., Li, B., Lei, W., Jiang, P., He, X.: Kuairand: an unbiased sequential recommendation dataset with randomly exposed videos. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 3953–3957 (2022)
3. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from implicit feedback. arXiv:1205.2618 (2012)
4. Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a survey and future directions. ACM Trans. Inf. Syst. 41(3), 1–39 (2023)
5. Chen, J., Wu, J., Chen, J., Xin, X., Li, Y., He, X.: How graph convolutions amplify popularity bias for recommendation? arXiv:2305.14886 (2023)