Efficient continuous kNN join over dynamic high-dimensional data

Author:

Ukey Nimish,Zhang Guangjian,Yang Zhengyi,Li Binghao,Li Wei,Zhang Wenjie

Abstract

AbstractGiven a user dataset $$\varvec{U}$$ U and an object dataset $$\varvec{I}$$ I , a kNN join query in high-dimensional space returns the $$\varvec{k}$$ k nearest neighbors of each object in dataset $$\varvec{U}$$ U from the object dataset $$\varvec{I}$$ I . The kNN join is a basic and necessary operation in many applications, such as databases, data mining, computer vision, multi-media, machine learning, recommendation systems, and many more. In the real world, datasets frequently update dynamically as objects are added or removed. In this paper, we propose novel methods of continuous kNN join over dynamic high-dimensional data. We firstly propose the HDR$$^+$$ + Tree, which supports more efficient insertion, deletion, and batch update. Further observed that the existing methods rely on globally correlated datasets for effective dimensionality reduction, we then propose the HDR Forest. It clusters the dataset and constructs multiple HDR Trees to capture local correlations among the data. As a result, our HDR Forest is able to process non-globally correlated datasets efficiently. Two novel optimisations are applied to the proposed HDR Forest, including the precomputation of the PCA states of data items and pruning-based kNN recomputation during item deletion. For the completeness of the work, we also present the proof of computing distances in reduced dimensions of PCA in HDR Tree. Extensive experiments on real-world datasets show that the proposed methods and optimisations outperform the baseline algorithms of naive RkNN join and HDR Tree.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3