Bipartite graph capsule network

Author:

Zhang Xianhang,Wang HanchenORCID,Yu Jianke,Chen Chen,Wang Xiaoyang,Zhang Wenjie

Abstract

AbstractGraphs have been widely adopted in various fields, where many graph models are developed. Most of previous research focuses on unipartite or homogeneous graph analysis. In this graphs, the relationships between the same type of entities are preserved in the graphs. Meanwhile, the bipartite graphs that model the complex relationships among different entities with vertices partitioned into two disjoint sets, are becoming increasing popular and ubiquitous in many real life applications. Though several graph classification methods on unipartite and homogenous graphs have been proposed by using kernel method, graph neural network, etc. However, these methods are unable to effectively capture the hidden information in bipartite graphs. In this paper, we propose the first bipartite graph-based capsule network, namely Bipartite Capsule Graph Neural Network (BCGNN), for the bipartite graph classification task. BCGNN exploits the capsule network and obtains information between the same type vertices in the bipartite graphs by constructing the one-mode projection. Extensive experiments are conducted on real-world datasets to demonstrate the effectiveness of our proposed method.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural Similarity Search on Supergraph Containment;IEEE Transactions on Knowledge and Data Engineering;2024-01

2. Rumor blocking with pertinence set in large graphs;World Wide Web;2024-01

3. Construction and Prediction of a Dynamic Multi-relationship Bipartite Network;Communications in Computer and Information Science;2023-11-27

4. IFGNN: An Individual Fairness Awareness Model for Missing Sensitive Information Graphs;Lecture Notes in Computer Science;2023-11-07

5. FPGN: follower prediction framework for infectious disease prevention;World Wide Web;2023-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3