Entity alignment via graph neural networks: a component-level study

Author:

Shu Yanfeng,Zhang Ji,Huang Guangyan,Chi Chi-Hung,He Jing

Abstract

AbstractEntity alignment plays an essential role in the integration of knowledge graphs (KGs) as it seeks to identify entities that refer to the same real-world objects across different KGs. Recent research has primarily centred on embedding-based approaches. Among these approaches, there is a growing interest in graph neural networks (GNNs) due to their ability to capture complex relationships and incorporate node attributes within KGs. Despite the presence of several surveys in this area, they often lack comprehensive investigations specifically targeting GNN-based approaches. Moreover, they tend to evaluate overall performance without analysing the impact of individual components and methods. To bridge these gaps, this paper presents a framework for GNN-based entity alignment that captures the key characteristics of these approaches. We conduct a fine-grained analysis of individual components and assess their influences on alignment results. Our findings highlight specific module options that significantly affect the alignment outcomes. By carefully selecting suitable methods for combination, even basic GNN networks can achieve competitive alignment results.

Funder

Commonwealth Scientific and Industrial Research Organisation

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3