Vertical variation in swelling properties of Norway spruce bark depending on tree age and bark moisture content

Author:

Ilek AnnaORCID,Płachta Agnieszka,Siegert Courtney,Campos Sergio Dias,Szostek Małgorzata,Tonello Kelly Cristina

Abstract

AbstractIn forest ecosystems, interception of rainwater on foliar and woody surfaces and the subsequent partitioning into stemflow is largely controlled by physical and hydrological properties of bark. Few forest ecohydrology studies have explored the role of bark properties (e.g., thickness, density) on bark water storage capacity and stemflow production. Even fewer have explored how different phases of water (e.g., liquid, vapor) may affect bark through bark swelling properties across the stem and how the degree of swelling affects tradeoffs between bark water storage and stemflow generation. Thus, the objective of this study was to analyze changes in a bark swelling index (BSI) vertically along stems of Picea abies (Norway spruce) after exposure to both water vapor and liquid water, as a function of tree age and bark moisture content. We found that tree age influenced BSI and bark moisture content, wherein BSI was ∼ 6.5% lower in older trees (70 years) compared to younger trees (35 and 50 years), and average moisture content was 10.4–13.2% lower. BSI increased when bark was exposed to hygroscopic water vapor and reached maximum swelling after 1 day of water saturation. BSI also increased from the base of the tree to 20–30% of total tree height, beyond which BSI remained relatively stable across all age classes. Enhanced understanding of bark swelling mechanisms as a result of stem position, age, and moisture content and exposure provide stronger foundations for understanding canopy hydrologic partitioning and the fate of rainwater moving through forest canopies.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior- Brasil (CAPES) - Finance Code 001

São Paulo Research Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3