Allometric relations between DBH and sapwood area for predicting stand transpiration: lessons learned from the Quercus genus

Author:

Schoppach R.ORCID,Chun K. P.ORCID,Klaus J.ORCID

Abstract

AbstractCatchment-scale transpiration is commonly determined by the use of sap-flow sensors, and its quantification, which is critical for water and forest management, relies crucially on the total catchment’s sapwood area (As). Species-specific allometric relationships between the trees As and the trees diameter at breast height (DBH) are widely used for determining stand or catchment As. However, substantial differences between studies challenge the robustness of these relationships between sites displaying various topographical and environmental characteristics. Our objectives for this study are to compare the parameters of these relationships between species of the Quercus genus from different sites across the globe and to test the role of topographical factors on the As-DBH relationship in Quercus petraea. Using 145 trees sampled within a 0.455 km2 catchment, we found that topography (slope, flow accumulation, aspect, curvature, and topographic wetness index) does not modulate the As-DBH relationship in Q. petraea, within our catchment. We compared our curve parameters with those from 16 studies on oak trees and found that the As-DBH relationship is not only species-specific, but depends on the site’s conditions. The use of species-specific parameters from other sites may lead to more than 100% difference in the calculation of As, and therefore in forest transpiration. In the light of these results, we recommend building site- and species-specific As-DBH relationships for determining stand or catchment transpiration, using a minimum of nine, randomly sampled trees, and different methods and azimuthal directions for determining sapwood depth.

Funder

Fonds National de la Recherche Luxembourg

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3