Patterns of deadwood amount and deadwood diversity along a natural forest recovery gradient from agriculture to old-growth lowland tropical forests

Author:

Falconí-López AnaORCID,Grella NinaORCID,Donoso David A.ORCID,Feldhaar HeikeORCID,Tremlett Constance J.ORCID,Müller JörgORCID

Abstract

AbstractDeadwood is a key component of nutrient cycling in natural tropical forests, serving as a globally important carbon storage and habitat for a high number of species. The conversion of tropical forests to agriculture modifies deadwood pools, but we know little about deadwood dynamics in forests recovering from human disturbance. Here we quantified the volume and diversity of coarse woody debris (CWD, ≥ 7 cm diameter) and the mass of fine woody debris (FWD, < 7 cm) along a chronosequence of natural forest recovery in the lowlands of the Ecuadorian Chocó region. We sampled forest plots ranging from 1–37 years of recovery post-cessation of agricultural use as either cacao plantation or cattle pasture, as well as actively managed cacao plantations and cattle pastures, and old-growth forests. In contrast to our expectation, we found no significant increase in deadwood volume with recovery time. The diversity in size, decay stage and type of CWD increased along the recovery gradient, with no effect of previous land use type. The mass of FWD increased overall across the recovery gradient, but these results were driven by a steep increase in former pastures, with no change observed in former cacao plantations. We suggest that the range of sizes and decomposition stages of deadwood found in these two major tropical agricultural systems could provide suitable resources for saproxylic organisms and an overlooked carbon storage outside old-growth forests. Our estimates of deadwood in agricultural systems and recovering forests can help improve global assessments of carbon storage and release in the tropics.

Funder

Julius-Maximilians-Universität Würzburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3