Using machine learning algorithms to cluster and classify stone pine (Pinus pinea L.) populations based on seed and seedling characteristics

Author:

Caliskan ServetORCID,Kartal ElifORCID,Balekoglu SafaORCID,Çalışkan FatmaORCID

Abstract

AbstractThe phenotype of a woody plant represents its unique morphological properties. Population discrimination and individual classification are crucial for breeding populations and conserving genetic diversity. Machine Learning (ML) algorithms are gaining traction as powerful tools for predicting phenotypes. The present study is focused on classifying and clustering the seeds and seedlings in terms of morphological characteristics using ML algorithms. In addition, the k-means algorithm is used to determine the ideal number of clusters. The results obtained from the k-means algorithm were then compared with reality. The best classification performance achieved by the Random Forest algorithm was an accuracy of 0.648 and an F1-Score of 0.658 for the seed traits. Also, the best classification performance for stone pine seedlings was observed for the k-Nearest Neighbors algorithm (k = 18), for which the accuracy and F1-Score were 0.571 and 0.582, respectively. The best clustering performance was achieved with k = 2 for the seed (average Silhouette index = 0.48) and seedling (average Silhouette Index = 0.51) traits. According to the principal component analysis, two dimensions accounted for 97% and 63% of the traits of seeds and seedlings, respectively. The most important features between the seed and seedling traits were cone weight and bud set, respectively. This study will provide a foundation and motivation for future efforts in forest management practices, particularly regarding reforestation, yield optimization, and breeding programs.

Funder

Istanbul University Cerrahpaşa

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3