Dust captured by a canopy and individual leaves of trees in the tropical mixed deciduous forest: Magnitude and influencing factors

Author:

Bridhikitti Arika,Khumphokha Pawaporn,Wanitha Wantanan,Prasopsin Suphat

Abstract

AbstractForest tree leaves play a significant role in air purification, but forest fires could offset the dust sink role. This study aims to assess the functions of the forest in atmospheric dust sink and source and assess the dust capturing capacity of individual leaves of various tree species in the tropical mixed deciduous forest in the dry season (November 21, 2021, to January 23, 2022), along with its influencing factors—climatic variables, environmental variables, and leaf morphology. The result shows that the downward flux or the forest dust sink role was predominant midday when air–mass turbulence played a role. Nonetheless, net mass PM1 and PM10 concentration trapped by the forest canopy was low, 0.79 and 2.24 µg m−3, respectively. For PM2.5, forest fires could outrun the PM2.5 sink role for the entire dry season. Considering the individual tree leave, maximum dust capturing capacities for the forest trees ranged from 0.95 to 5.197 g m−2. Leaf dust capturing capacity was enhanced under cold and dry weather, strong winds, and for trees with defoliated or irregular shape. Leaf/leaflet enhancing the dust capturing capacity exhibited large size; either thick and leathery texture (Coriaceous) or thin, semi-translucent, membrane-like texture (Membranaceous); indumentum top being short, stiff trichomes (Scabrous); or indumentum bottom surface being densely short, soft trichomes (Tomentose). The various dust capturing dynamics among tree species could benefit dust capturing by the forests in the dry season.

Funder

the National Research Council of Thailand

Mahidol University Kanchanaburi Campus under Senior Project Grant

Mahidol University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3