Quo vadis Scots pine forestry in northern Germany: How do silvicultural management and climate change determine an uncertain future?

Author:

Knocke Hergen ChristianORCID,Axer MaximilianORCID,Hamkens Hans FriedrichORCID,Fischer ChristophORCID,Hansen Jan HendrikORCID,Nagel Ralf-VolkerORCID,Albert MatthiasORCID

Abstract

AbstractScots pine is of greatest importance in northern Germany regarding its cultivation area and expected capability to perform in climate change. However, pine predominantly occurs in monocultures. Therefore, future pine forestry depends on an adaptation to climate change while improving ecological and economic forest functions. Yet future development of pine remains uncertain due to leeway in silvicultural guidelines and future climate. This study questions: (i) what is the range of future pine shares under climate change and different silvicultural management in northern Germany, (ii) how will the current stands develop and (iii) what is the range of uncertainty arising from climate models and silvicultural options? To answer these issues we (i) selected forest development types site- and climate-sensitively to either minimize or to maximize pine shares, (ii) simulated four, now practiced forest management scenarios for 50 years based on the German National Forest Inventory and (iii) analyzed the differences, to be interpreted as uncertainty. Novel to our approach is the site- and climate-sensitive selection of forest development types on large scales which emphasizes the contrasts of the different management guidelines. The results show that growing stock and cultivation area will decrease even if pine is promoted in forestry. The predicted restoration rate ranges from 50 to 72% depending on scenario and previous thinning regime. In conclusion, under the given management concepts and considering today’s high proportion of old pine, restoration is alarmingly slow. Amid the rapidly changing climate, we recommend to further adjust the management guidelines to accelerate forest restoration.

Funder

Forest Climate Fund

Projekt DEAL

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3