Nonparametric upscaling of bark beetle infestations and management from plot to landscape level by combining individual-based with Markov chain models

Author:

Pietzsch Bruno WalterORCID,Wudel ChrisORCID,Berger UtaORCID

Abstract

AbstractLinked to climate change, drivers such as increased temperatures and decreased water availability affect forest health in complex ways by simultaneously weakening tree vitality and promoting insect pest activity. One major beneficiary of climate-induced changes is the European spruce bark beetle (Ips typographus). To improve the mechanistic understanding of climate change impacts on long-term beetle infestation risks, individual-based simulation models (IBM) such as the bark beetle dispersion model IPS-SPREADS have been proven as effective tools. However, the computational costs of IBMs limit their spatial scale of application. While these tools are best suitable to simulate bark beetle dynamics on the plot level, upscaling the process to larger areas is challenging. The larger spatial scale is, nevertheless, often required to support the selection of adequate management intervention. Here, we introduce a novel two-step approach to address this challenge: (1) we use the IPS-SPREADS model to simulate the bark beetle dispersal at a local scale by dividing the research area into 250 × 250 m grid cells; and (2) we then apply a metamodel framework to upscale the results to the landscape level. The metamodel is based on Markov chains derived from the infestation probabilities of IPS-SPREADS results and extended by considering neighbor interaction and spruce dieback of each focal cell. We validated the metamodel by comparing its predictions with infestations observed in 2017 and 2018 in the Saxon Switzerland national park, Germany, and tested sanitation felling as a measure to prevent potential further outbreaks in the region. Validation showed an improvement in predictions by introducing the model extension of beetle spreading from one cell to another. The metamodel forecasts indicated an increase in the risk of infestation for adjacent forest areas. In case of a beetle mass outbreak, sanitation felling intensities of 80 percent and above seem to mitigate further outbreak progression.

Funder

Deutsche Bundesstiftung Umwelt

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Forestry

Reference58 articles.

1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH (Ted), Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684. https://doi.org/10.1016/j.foreco.2009.09.001

2. Baier P, Pennerstorfer J, Schopf A (2007) PHENIPS—A comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. For Ecol Manag 249(3):171–186. https://doi.org/10.1016/j.foreco.2007.05.020

3. Bivand R, Keitt T, Rowlingson B (2021) Rgdal: bindings for the geospatial data abstraction library. R package version 1.5-23. https://cran.r-project.org/package=rgdal

4. Bivand R, Lewin-Koh N (2020) Maptools: tools for handling spatial objects. R package version 1.0-2. https://cran.r-project.org/package=maptools

5. Bivand R, Rundel C (2020) Rgeos: interface to geometry engine—open source (GEOS). R package version 0.5-5. https://cran.r-project.org/package=rgeos

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3