Abstract
AbstractLinked to climate change, drivers such as increased temperatures and decreased water availability affect forest health in complex ways by simultaneously weakening tree vitality and promoting insect pest activity. One major beneficiary of climate-induced changes is the European spruce bark beetle (Ips typographus). To improve the mechanistic understanding of climate change impacts on long-term beetle infestation risks, individual-based simulation models (IBM) such as the bark beetle dispersion model IPS-SPREADS have been proven as effective tools. However, the computational costs of IBMs limit their spatial scale of application. While these tools are best suitable to simulate bark beetle dynamics on the plot level, upscaling the process to larger areas is challenging. The larger spatial scale is, nevertheless, often required to support the selection of adequate management intervention. Here, we introduce a novel two-step approach to address this challenge: (1) we use the IPS-SPREADS model to simulate the bark beetle dispersal at a local scale by dividing the research area into 250 × 250 m grid cells; and (2) we then apply a metamodel framework to upscale the results to the landscape level. The metamodel is based on Markov chains derived from the infestation probabilities of IPS-SPREADS results and extended by considering neighbor interaction and spruce dieback of each focal cell. We validated the metamodel by comparing its predictions with infestations observed in 2017 and 2018 in the Saxon Switzerland national park, Germany, and tested sanitation felling as a measure to prevent potential further outbreaks in the region. Validation showed an improvement in predictions by introducing the model extension of beetle spreading from one cell to another. The metamodel forecasts indicated an increase in the risk of infestation for adjacent forest areas. In case of a beetle mass outbreak, sanitation felling intensities of 80 percent and above seem to mitigate further outbreak progression.
Funder
Deutsche Bundesstiftung Umwelt
Technische Universität Dresden
Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH (Ted), Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684. https://doi.org/10.1016/j.foreco.2009.09.001
2. Baier P, Pennerstorfer J, Schopf A (2007) PHENIPS—A comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. For Ecol Manag 249(3):171–186. https://doi.org/10.1016/j.foreco.2007.05.020
3. Bivand R, Keitt T, Rowlingson B (2021) Rgdal: bindings for the geospatial data abstraction library. R package version 1.5-23. https://cran.r-project.org/package=rgdal
4. Bivand R, Lewin-Koh N (2020) Maptools: tools for handling spatial objects. R package version 1.0-2. https://cran.r-project.org/package=maptools
5. Bivand R, Rundel C (2020) Rgeos: interface to geometry engine—open source (GEOS). R package version 0.5-5. https://cran.r-project.org/package=rgeos
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献