Temporal changes in soil chemical compositions in acidified mountain forest soils of Czech Republic

Author:

Thai Saven,Pavlů Lenka,Tejnecký Václav,Chovancová Sabina,Hin Lyhour,Thet Bunthorn,Němeček Karel,Drábek Ondřej

Abstract

AbstractThe study aimed to investigate the temporal changes of pH, sorption complex, and structure of soil organic matter through the forest soil profile under beech and spruce forests located in Jizera mountains (Czech Republic) and affected by natural and anthropogenic acidification. Soil samples were collected in four different years (2008, 2013, 2015, and 2020) in each horizon: fermented horizons (F), humified horizons (H), organo-mineral horizons (A), and subsurface mineral horizons (B) (cambic or spodic). The cation exchange capacity (CEC), base saturation (BS), exchangeable element contents, pH, and soil organic carbon content (SOC) were determined. The infrared soil spectra were used to calculate indices of potential wettability, aromaticity, and decomposition. Our results showed that most nutrients and aliphatic compounds were retained in the uppermost soil layers. The aromaticity of organic matter increased with depth, while polysaccharides, regarding the decomposition compound, disappeared through the soil horizons. In a long-term observation, SOC content had constantly increased under beech, while spruce remained stable in the organic horizons. Exchangeable element contents increased in each horizon, except for Al and Fe; their content quickly decreased in F horizons and slowly decreased in H horizon under both forest tree species, while the deeper horizons remained constant, but increased in A horizon under spruce. Continuously increasing base cations concentrations in sorption complex of both forest tree species during the study period revealed the effect of forest stand types on acid deposition reduction and mitigation. The temporal changes in CEC, BS, SOC, and soil wettability are more intensive in beech than in spruce forest floor.

Funder

Czech University of Life Sciences Prague

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Forestry

Reference115 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3