Environmental controls on seedling establishment in a boreal forest: implications for Scots pine regeneration in continuous cover forestry

Author:

Häggström BodilORCID,Gundale Michael J.ORCID,Nordin AnnikaORCID

Abstract

AbstractIn nutrient poor and dry forest sites common to northern Scandinavia, Scots pine (Pinus sylvestris L.) is the most common species both in managed and natural forests. However, Scots pine is sensitive to competition during establishment. Harvesting of all trees within a given area, i.e., clear-cutting, liberates regenerating seedlings from competition with mature trees. However, recently, clear-cut-free or continuous cover forestry has been the subject of substantial debate. When choosing a management method, it is important to recognize how competitive interactions direct the success of Scots pine regeneration. We studied Scots pine regeneration at three environments: beneath the canopy of mature trees, at the canopy edge in full sunlight, and distant from the canopy with no influence of mature trees. We imposed three treatments in each of these environments: root isolation (i.e., trenching), nitrogen (N) fertilization, and control plots. Root isolation enhanced seedling performance under the canopy of mature trees. Nitrogen fertilization enhanced seedling performance to a greater extent in the clear-cut than at the forest edge. However, N fertilization had no effect under the canopy. In the N-fertilized plots, we measured higher N content in the soil under the canopy than in the open environments, indicating that not all excess N was obtained by the mature trees. N-uptake might have been limited by competition for water in the N-fertilized plots. Our results suggest that belowground competition limits the success of regeneration of Scots pine. However, N fertilization presents a tool to compensate for underground competition along canopy edges.

Funder

Swedish University of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3