Tower yarder powertrain performance simulation analysis: electrification study

Author:

Leitner Stefan,Perez Estevez Manuel Antonio,Renzi Massimiliano,Spinelli Raffaele,Mazzetto Fabrizio,Vidoni Renato

Abstract

AbstractRadical changes are necessary to address challenges related to global warming and pollution. Ever-tightening emission standards for combustion engines have already led to a drastic reduction in the amount of harmful gas and matter emitted. Drivetrain hybridization and electrification, which are becoming increasingly popular in all sectors, are two additional ways to achieve that goal. However, within the forestry sector most of the equipments still rely on conventional mechanic or hydraulic drivetrains. An example of this is tower yarders, the workhorse of the alpine logging industry. This work simulates the duty cycle and energy flow of tower yarders in logging operations, both with conventional diesel–hydraulic configuration and a proposed hybrid configuration. The objective is to determine the potential of hybridized drivetrains for tower yarder applications. Detailed models are developed to describe the cable-based extraction of timber and tower yarder internal processes. Extensive simulations were performed to determine force, power and energy components during the harvesting operation for both the diesel–hydraulic and hybrid drivetrains. Results confirm the large potential of the hybrid configuration for efficiency improvement and emission reduction, with estimated fuel savings of 45% and 63% in the uphill and downhill configurations, respectively. Extensive sensitivity analysis further demonstrates that the hybrid concept remains effective across a wide range of cable setup and transport characteristics. This confirms the large potential of electrified drivetrains, especially in the presence of very dynamic duty cycles, as is the case in cable-based logging equipment.

Funder

European Regional Development Fund

Libera Università di Bolzano

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3