Fairness in rankings and recommendations: an overview

Author:

Pitoura Evaggelia,Stefanidis Kostas,Koutrika Georgia

Abstract

AbstractWe increasingly depend on a variety of data-driven algorithmic systems to assist us in many aspects of life. Search engines and recommender systems among others are used as sources of information and to help us in making all sort of decisions from selecting restaurants and books, to choosing friends and careers. This has given rise to important concerns regarding the fairness of such systems. In this work, we aim at presenting a toolkit of definitions, models and methods used for ensuring fairness in rankings and recommendations. Our objectives are threefold: (a) to provide a solid framework on a novel, quickly evolving and impactful domain, (b) to present related methods and put them into perspective and (c) to highlight open challenges and research paths for future work.

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems

Reference92 articles.

1. Angwin, J., et al.: Machine bias. ProPublica (2016). https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

2. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: Fairness as a program property. CoRR abs/1610.06067 (2016). http://arxiv.org/abs/1610.06067

3. Albarghouthi, A., Vinitsky, S.: Fairness-aware programming. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* 2019, pp. 211–219. ACM (2019)

4. Amer-Yahia, S., Roy, S.B., Chawla, A., Das, G., Yu, C.: Group recommendation: semantics and efficiency. Proc. VLDB Endow. 2(1), 754–765 (2009)

5. Asudeh, A., Jagadish, H.V.: Fairly evaluating and scoring items in a data set. Proc. VLDB Endow. 13(12), 3445–3448 (2020)

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-processing and post-processing strategies for balancing accuracy and sustainability in product recommendations;Electronic Commerce Research and Applications;2024-09

2. Properties of Group Fairness Measures for Rankings;ACM Transactions on Social Computing;2024-08-27

3. Dual-Side Adversarial Learning Based Fair Recommendation for Sensitive Attribute Filtering;ACM Transactions on Knowledge Discovery from Data;2024-06-19

4. Fairness Testing: A Comprehensive Survey and Analysis of Trends;ACM Transactions on Software Engineering and Methodology;2024-06-04

5. A Survey of Bias and Fairness in Healthcare AI;2024 IEEE 12th International Conference on Healthcare Informatics (ICHI);2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3