Anytime bottom-up rule learning for large-scale knowledge graph completion

Author:

Meilicke ChristianORCID,Chekol Melisachew Wudage,Betz Patrick,Fink Manuel,Stuckeschmidt Heiner

Abstract

AbstractKnowledge graph completion is the task of predicting correct facts that can be expressed by the vocabulary of a given knowledge graph, which are not explicitly stated in that graph. Broadly, there are two main approaches for solving the knowledge graph completion problem. Sub-symbolic approaches embed the nodes and/or edges of a given graph into a low-dimensional vector space and use a scoring function to determine the plausibility of a given fact. Symbolic approaches learn a model that remains within the primary representation of the given knowledge graph. Rule-based approaches are well-known examples. One such approach is AnyBURL. It works by sampling random paths, which are generalized into Horn rules. Previously published results show that the prediction quality of AnyBURL is close to current state of the art with the additional benefit of offering an explanation for a predicted fact. In this paper, we propose several improvements and extensions of AnyBURL. In particular, we focus on AnyBURL’s capability to be successfully applied to large and very large datasets. Overall, we propose four separate extensions: (i) We add to each rule a set of pairwise inequality constraints which enforces that different variables cannot be grounded by the same entities, which results into more appropriate confidence estimations. (ii) We introduce reinforcement learning to guide path sampling in order to use available computational resources more efficiently. (iii) We propose an efficient sampling strategy to approximate the confidence of a rule instead of computing its exact value. (iv) We develop a new multithreaded AnyBURL, which incorporates all previously mentioned modifications. In an experimental study, we show that our approach outperforms both symbolic and sub-symbolic approaches in large-scale knowledge graph completion. It has a higher prediction quality and requires significantly less time and computational resources.

Funder

Universität Mannheim

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3