1. Ancona, M., Ceolini, E., Öztireli, A.C., Gross, M.H.: A unified view of gradient-based attribution methods for deep neural networks. CoRR abs/1711.06104 (2017)
2. Barlaug, N., Gulla, J.A.: Neural networks for entity matching: a survey. ACM Trans. Knowl. Discov. Data 15(3), 52:1-52:37 (2021)
3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
4. Brunner, G., Liu, Y., Pascual, D., Richter, O., Ciaramita, M., Wattenhofer, R.: On identifiability in transformers. In: ICLR, OpenReview.net (2020)
5. Brunner, U., Stockinger, K.: Entity matching with transformer architectures - a step forward in data integration. In: EDBT, OpenProceedings.org, pp. 463–473 (2020)