Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources

Author:

Månberger AndréORCID

Abstract

AbstractPrevious research has identified that climate change mitigation policies could increase demand for resources perceived as critical, because these are used in many renewable energy technologies. This study assesses how reducing the extraction and use of fossil fuels could affect the supply of (i) elements jointly produced with fossil fuels and (ii) elements jointly produced with a host that is currently mainly used in fossil fuel supply chains. Several critical resources are identified for which supply potential from current sources is likely to decline. Some of these, e.g. germanium and vanadium, have uses in low-carbon energy systems. Renewable energy transitions can thus simultaneously increase demand and reduce supply of critical elements. The problem is greatest for technology groups in which by-products are more difficult to recycle than the host. Photovoltaic cell technology stands out as one such group. Phasing out fossil fuels has the potential to reduce both the supply potential (i.e. primary flow) and recoverable resources (i.e. stock) of materials involved in such technology groups. Further studies could examine possibilities to increase recovery rates, extract jointly produced resources independently of hosts and how the geographical distribution of by-product supply sources might change if fossil fuel extraction is scaled back.

Funder

Stiftelsen för Miljöstrategisk Forskning

Lund University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference92 articles.

1. Anderson CD (2019) Antimony production and commodites. In: Dunne RC, Kawatra SK, Young CA (eds) SME mineral processing & extractive metallurgy handbook. society for mining, metallurgy, and exploration. Engelwood.

2. Anderson ST (2017) Economics, helium, and the U.S. federal helium reserve: summary and outlook. Nat Resour Res 27:455–477. https://doi.org/10.1007/s11053-017-9359-y

3. Arrobas DLP, Hund KL, Mccormick MS, Ningthoujam J, Drexhage JR (2017) The growing role of minerals and metals for a low carbon future. World Bank Group, Washington DC

4. Arvidsson R, Sandén BA (2017) Carbon nanomaterials as potential substitutes for scarce metals. J Clean Prod 156:253–261. https://doi.org/10.1016/j.jclepro.2017.04.048

5. Bonel KA (2005) Barytes: mineral profile. British Geological Survey, Nottingham

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3