Elevated luteinizing hormone receptor signaling or selenium treatment leads to comparable changes in adrenal cortex histology and androgen-AR/ZIP9 signaling

Author:

Wieczorek Jaroslaw,Pawlicki Piotr,Zarzycka Marta,Pardyak Laura,Niedbala Piotr,Duliban Michal,Yurdakok-Dikmen Begum,Kotula-Balak MalgorzataORCID

Abstract

AbstractThe importance and regulation of adrenal androgen production and signaling are not completely understood and are scarcely studied. In addition, there is still a search for appropriate animal models and experimental systems for the investigation of adrenal physiology and disease. Therefore, the main objective of the study was to evaluate the effect of luteinizing hormone (LH) signaling and selenium (Se2+) exposure on androgen adrenal signaling via canonical androgen receptor (AR), and membrane androgen receptor acting as zinc transporter (zinc- and iron-like protein 9; ZIP9). For herein evaluations, adrenals isolated from transgenic mice with elevated LH receptor signaling (KiLHRD582G) and adrenals obtained from rabbits used for ex vivo adenal cortex culture and exposure to Se2+ were utilized. Tissues were assessed for morphological, morphometric, and Western blot analyses and testosterone and zinc level measurements.Comparison of adrenal cortex histology and morphometric analysis in KiLHRD582G mice and Se2+-treated rabbits revealed cell hypertrophy. No changes in the expression of proliferating cell nuclear antigen (PCNA) were found. In addition, AR expression was decreased (p < 0.001) in both KiLHRD582G mouse and Se2+-treated rabbit adrenal cortex while expression of ZIP9 showed diverse changes. Its expression was increased (P < 0.001) in KiLHRD582G mice and decreased (P < 0.001) in Se2+-treated rabbits but only at the dose 10 ug/100 mg/ tissue. Moreover, increased testosterone levels (P < 0.05) and zinc levels were detected in the adrenal cortex of KiLHRD582G mice whereas in rabbit adrenal cortex treated with Se2+, the effect was the opposite (P < 0.001).

Funder

Ministerstwo Edukacji i Nauki

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3