A mysterious cloak: the peptidoglycan layer of algal and plant plastids

Author:

MacLeod Alexander I.ORCID,Knopp Michael R.,Gould Sven B.

Abstract

AbstractThe plastids of algae and plants originated on a single occasion from an endosymbiotic cyanobacterium at least a billion years ago. Despite the divergent evolution that characterizes the plastids of different lineages, many traits such as membrane organization and means of fission are universal—they pay tribute to the cyanobacterial origin of the organelle. For one such trait, the peptidoglycan (PG) layer, the situation is more complicated. Our view on its distribution keeps on changing and little is known regarding its molecular relevance, especially for land plants. Here, we investigate the extent of PG presence across the Chloroplastida using a phylogenomic approach. Our data support the view of a PG layer being present in the last common ancestor of land plants and its remarkable conservation across bryophytes that are otherwise characterized by gene loss. In embryophytes, the occurrence of the PG layer biosynthetic toolkit becomes patchier and the availability of novel genome data questions previous predictions regarding a functional coevolution of the PG layer and the plastid division machinery-associated gene FtsZ3. Furthermore, our data confirm the presence of penicillin-binding protein (PBP) orthologs in seed plants, which were previously thought to be absent from this clade. The 5-7 nm thick, and seemingly unchanged, PG layer armoring the plastids of glaucophyte algae might still provide the original function of structural support, but the same can likely not be said about the only recently identified PG layer of bryophyte and tracheophyte plastids. There are several issues to be explored regarding the composition, exact function, and biosynthesis of the PG layer in land plants. These issues arise from the fact that land plants seemingly lack certain genes that are believed to be crucial for PG layer production, even though they probably synthesize a PG layer.

Funder

Deutsche Forschungsgemeinschaft

Gordon and Betty Moore Foundation

Heinrich-Heine-Universität Düsseldorf

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plastic plastids;Protoplasma;2023-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3