Machine-Learning-Enabled DDoS Attacks Detection in P4 Programmable Networks

Author:

Musumeci FrancescoORCID,Fidanci Ali Can,Paolucci Francesco,Cugini Filippo,Tornatore Massimo

Abstract

Abstract Distributed Denial of Service (DDoS) attacks represent a major concern in modern Software Defined Networking (SDN), as SDN controllers are sensitive points of failures in the whole SDN architecture. Recently, research on DDoS attacks detection in SDN has focused on investigation of how to leverage data plane programmability, enabled by P4 language, to detect attacks directly in network switches, with marginal involvement of SDN controllers. In order to effectively address cybersecurity management in SDN architectures, we investigate the potential of Artificial Intelligence and Machine Learning (ML) algorithms to perform automated DDoS Attacks Detection (DAD), specifically focusing on Transmission Control Protocol SYN flood attacks. We compare two different DAD architectures, called Standalone and Correlated DAD, where traffic features collection and attack detection are performed locally at network switches or in a single entity (e.g., in SDN controller), respectively. We combine the capability of ML and P4-enabled data planes to implement real-time DAD. Illustrative numerical results show that, for all tested ML algorithms, accuracy, precision, recall and F1-score are above 98% in most cases, and classification time is in the order of few hundreds of $$\upmu \text {s}$$ μ s in the worst case. Considering real-time DAD implementation, significant latency reduction is obtained when features are extracted at the data plane by using P4 language. Graphic Abstract

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Strategy and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3