A Federated Learning Approach to Frequent Itemset Mining in Cyber-Physical Systems

Author:

Ahmed Usman,Srivastava GautamORCID,Lin Jerry Chun-Wei

Abstract

AbstractEffective vector representation has been proven useful for transaction classification and clustering tasks in Cyber-Physical Systems. Traditional methods use heuristic-based approaches and different pruning strategies to discover the required patterns efficiently. With the extensive and high dimensional availability of transactional data in cyber-physical systems, traditional methods that used frequent itemsets (FIs) as features suffer from dimensionality, sparsity, and privacy issues. In this paper, we first propose a federated learning-based embedding model for the transaction classification task. The model takes transaction data as a set of frequent item-sets. Afterward, the model can learn low dimensional continuous vectors by preserving the frequent item-sets contextual relationship. We perform an in-depth experimental analysis on the number of high dimensional transactional data to verify the developed models with attention-based mechanism and federated learning. From the results, it can be seen that the designed model can help and improve the decision boundary by reducing the global loss function while maintaining both security and privacy.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Western Norway University Of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Strategy and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference58 articles.

1. Fournier-Viger, P., Lin, J.C.W., Vo, B., Chi, T.T., Zhang, J., Le, H.B.: A survey of itemset mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7(4), 1207 (2017)

2. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)

3. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. The International Conference on Very Large Data Bases, vol. 1215, pp. 487–499 (1994)

4. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 3(1), 259–289 (1997)

5. Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey of sequential pattern mining. Data Sci. Pattern Recogn. 1, 54–77 (2017)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3