End-to-End No-wait Scheduling for Time-Triggered Streams in Mixed Wired-Wireless Networks

Author:

Sharma Gourav Prateek,Tavernier Wouter,Colle Didier,Pickavet Mario,Haxhibeqiri Jetmir,Hoebeke Jeroen,Moerman Ingrid

Abstract

AbstractProprietary communication technologies for time-critical communication in industrial environments are being gradually replaced by Time-sensitive Networking (TSN)-enabled Ethernet. Furthermore, attempts have been made to bring TSN features into wireless networks so that the flexibility of wireless networks can be utilized, and the end-to-end timings for Time-Triggered (TT) streams can be guaranteed. Given a mixed wired-wireless network, the scheduling problem should be solved for a set of TT stream requests. In this paper, we formulate the no-wait scheduling problem for mixed wired-wireless networks as a Mixed Integer Linear Programming (MILP) model with the objective of minimizing the flowspan. We also propose a relaxation of the original MILP in the form of a 2-stage MILP formulation. Next, a scalable approach based on the greedy heuristic is proposed to solve the problem for realistic-size networks. Evaluation results show that the greedy heuristic is suitable for realistic problem sizes where the MILP-based approach is found to be practically infeasible. Furthermore, the impact of wireless requests on the performance of the greedy heuristic is reported.

Funder

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3