DB-CMT: A New Concurrent Multi-path Stream Control Transport Protocol

Author:

Verma Lal Pratap,Sharma Varun Kumar,Kumar Mahesh,Kanellopoulos Dimitris,Mahanti Aniket

Abstract

AbstractStream Control Transmission Protocol (SCTP) exploits multiple network interfaces to provide multi-streaming and data chunk ordering in a stream. An extended feature of SCTP, i.e., Concurrent Multi-path Transfer (CMT), bids concurrent data transmission in a multi-path data transfer environment and guarantees bandwidth aggregation, load sharing, robustness, and reliability. In such an environment, the paths usually have distinct characteristics (i.e., delay, Packet Loss Rate (PLR), and bandwidth). Thus, data chunks are received out-of-ordered at the destination. As a result, CMT causes excessive receiver buffer blocking and unnecessary congestion window (cwnd) reductions. Also, during the selection of the retransmission destination path (to resend a lost data chunk), CMT does not take into account vital Quality of Service (QoS) parameters such as the PLR of a path under consideration. This paper introduces a new Delay-Based Concurrent Multi-path Transfer (DB-CMT) approach that transmits data on multiple paths according to their delay. In this scheme, we present a Delay-Based Data chunk Scheduling Policy (DB-DSP), a Retransmission Path Selection Policy (RTX-CL), and a new Delay-Based Fast Retransmission Policy (DB-FRP). The simulation results show that the DB-CMT’s RTX-CL policy performs better than the well-known RTX-CWND and RTX-LOSSRATE retransmission schemes. Also, the overall performance of DB-CMT witnesses improved throughput, fewer timeouts, and reduced File Transfer Time (FTT) performances.

Funder

University of Auckland

Publisher

Springer Science and Business Media LLC

Subject

Strategy and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3