Navigating fairness measures and trade-offs

Author:

Buijsman StefanORCID

Abstract

AbstractTo monitor and prevent bias in AI systems, we can use a wide range of (statistical) fairness measures. However, it is mathematically impossible to optimize all of these measures at the same time. In addition, optimizing a fairness measure often greatly reduces the accuracy of the system (Kozodoi et al., Eur J Oper Res 297:1083–1094, 2022). As a result, we need a substantive theory that informs us how to make these decisions and for what reasons. I show that by using Rawls’ notion of justice as fairness, we can create a basis for navigating fairness measures and the accuracy trade-off. In particular, this leads to a principled choice focusing on both the most vulnerable groups and the type of fairness measure that has the biggest impact on that group. This also helps to close part of the gap between philosophical accounts of distributive justice and the fairness literature that has been observed by (Kuppler et al. Distributive justice and fairness metrics in automated decision-making: How much overlap is there? arXiv preprint arXiv:2105.01441, 2021), and to operationalise the value of fairness.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3