Rawlsian AI fairness loopholes

Author:

Jørgensen Anna Katrine,Søgaard AndersORCID

Abstract

AbstractResearchers and industry developers in artificial intelligence (AI) and natural language processing (NLP) have uniformly adopted a Rawlsian definition of fairness. On this definition, a technology is fair if performance is maximized for the least advantaged. We argue this definition has considerable loopholes, which can be used to legitimize common practices in AI/NLP research that actively contributes to social and economic inequalities. Such practices include what we shall refer to as Subgroup Test Ballooning and Snapshot-Representative Evaluation. Subgroup Test Ballooning refers to the practice of initially tailoring a technology to a specific target group of technology-ready early adopters to collect feedback faster. Snapshot-Representative Evaluation refers to the practice of evaluating a technology on a representative sample of current end users. Both strategies may contribute to social and economic inequalities but are commonly justified using arguments familiar from political economics and grounded in Rawlsian fairness. We discuss an egalitarian alternative to Rawlsian fairness, as well as, more generally, the roadblocks on the path toward globally and socially fair AI/NLP research and development.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference32 articles.

1. Bender, E.M., Friedman, B.: Data statements for natural language processing: Toward mitigating system bias and enabling better science. Trans Assoc Computational Linguist 6, 587–604 (2018). https://doi.org/10.1162/tacl_a_00041

2. Williamson R., Menon A. Fairness risk measures. In: Chaudhuri K., Salakhutdinov R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6786–6797. PMLR, Long Beach, California (2019). https://proceedings.mlr.press/v97/williamson19a.html

3. Larson B. Gender as a variable in natural-language processing: Ethical considerations. In: Proceedings of the First ACL Workshop on Ethics in Natural Language Processing, pp. 1–11. Association for Computational Linguistics, Valencia, Spain (2017). https://doi.org/10.18653/v1/W17-1601. https://aclanthology.org/W17-1601

4. Vig J., Gehrmann S., Belinkov Y., Qian S., Nevo D., Singer Y., Shieber S. Investigating gender bias in language models using causal mediation analysis. In: Larochelle H., Ranzato M., Hadsell R., Balcan, M.F., Lin H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 12388–12401. Curran Associates, Inc., Vancouver, CA (2020). https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf

5. Ethayarajh K., Jurafsky D. Utility is in the eye of the user: A critique of NLP leaderboards. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4846–4853. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.393. https://aclanthology.org/2020.emnlp-main.393

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3