1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS), Association for Computing Machinery, New York, NY, USA, pp. 308–318 (2016). https://doi.org/10.1145/2976749.2978318
2. Alkabawi, E.M., Hilal, A.R., Basir, O.A.: Feature abstraction for early detection of multi-type of dementia with sparse auto-encoder. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3471–3476 (2017). https://doi.org/10.1109/SMC.2017.8123168
3. Bakker, M.A., Riverón Valdés, H., Tu, D.P., Gummadi, K.P., Varshney, K.R., Weller, A., Pentland, A.: Fair enough: improving fairness in budget-constrained decision making using confidence thresholds. In: H. Espinoza, J. Hernández-Orallo, X.C. Chen, S.S. ÓhÉigeartaigh, X. Huang, M. Castillo-Effen, R. Mallah, J. McDermid (eds.) Proceedings of the Workshop on Artificial Intelligence Safety co-located with 34th AAAI Conference on Artificial Intelligence, CEUR Workshop Proceedings, vol. 2560, pp. 41–53. CEUR-WS.org, New York, NY, USA (2020). urn:nbn:de:0074-2560-0
4. Barni, M., Orlandi, C., Piva, A.: A privacy-preserving protocol for neural-network-based computation. In: Proceedings of the 8th Workshop on Multimedia and Security. Association for Computing Machinery, New York, NY, USA, pp. 146–151 (2006). https://doi.org/10.1145/1161366.1161393
5. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: 21st International Conference on Data Engineering (ICDE'05), pp. 217–228 (2005). https://doi.org/10.1109/ICDE.2005.42