A global scale comparison of risk aggregation in AI assessment frameworks

Author:

Schmitz AnnaORCID,Mock Michael,Görge RebekkaORCID,Cremers Armin B.,Poretschkin Maximilian

Abstract

AbstractAI applications bear inherent risks in various risk dimensions, such as insufficient reliability, robustness, fairness or data protection. It is well-known that trade-offs between these dimensions can arise, for example, a highly accurate AI application may reflect unfairness and bias of the real-world data, or may provide hard-to-explain outcomes because of its internal complexity. AI risk assessment frameworks aim to provide systematic approaches to risk assessment in various dimensions. The overall trustworthiness assessment is then generated by some form of risk aggregation among the risk dimensions. This paper provides a systematic overview on risk aggregation schemes used in existing AI risk assessment frameworks, focusing on the question how potential trade-offs among the risk dimensions are incorporated. To this end, we examine how the general risk notion, the application context, the extent of risk quantification, and specific instructions for evaluation may influence overall risk aggregation. We discuss our findings in the current frameworks in terms of whether they provide meaningful and practicable guidance. Lastly, we derive recommendations for the further operationalization of risk aggregation both from horizontal and vertical perspectives.

Funder

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

Bundesministerium für Bildung und Forschung

Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS

Publisher

Springer Science and Business Media LLC

Reference71 articles.

1. AI Ethics Impact Group: From Principles to Practice: An interdisciplinary Framework to operationalize AI ethics. https://www.ai-ethics-impact.org/en (2019). Accessed 19 January 2024

2. AIST (National Institute of Advanced Industrial Science and Technology): Machine Learning Quality Management Guideline, 3rd English Edition. Technical Report, Digital Architecture Research Center / Cyber Physical Security Research Center / Artificial Intelligence Research Center, Digiarc-TR-2023–01 / CPSEC-TR-2023002 (2023)

3. Al-Najjar, N. I., Pomatto, L.: Aggregate risk and the Pareto principle. J. Econ. Theory. 189 (2020)

4. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Depend. Secure Comput. 1(1), 11–33 (2004)

5. Ayling, J., Chapman, A.: Putting AI ethics to work: are the tools fit for purpose? AI and Ethics. 2(3), 405–429 (2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3