Artificial intelligence to improve ischemia prediction in Rubidium Positron Emission Tomography—a validation study

Author:

Frey Simon M.ORCID,Bakula Adam,Tsirkin Andrew,Vasilchenko Vasily,Ruff Peter,Oehri Caroline,Amrein Melissa Fee,Huré Gabrielle,Rumora Klara,Schäfer Ibrahim,Caobelli Federico,Haaf Philip,Mueller Christian E.,Remppis Bjoern Andrew,Rocca Hans-Peter Brunner-La,Zellweger Michael J.

Abstract

Abstract Background Patients are referred to functional coronary artery disease (CAD) testing based on their pre-test probability (PTP) to search for myocardial ischemia. The recommended prediction tools incorporate three variables (symptoms, age, sex) and are easy to use, but have a limited diagnostic accuracy. Hence, a substantial proportion of non-invasive functional tests reveal no myocardial ischemia, leading to unnecessary radiation exposure and costs. Therefore, preselection of patients before ischemia testing needs to be improved using a more predictive and personalised approach. Aims Using multiple variables (symptoms, vitals, ECG, biomarkers), artificial intelligence–based tools can provide a detailed and individualised profile of each patient. This could improve PTP assessment and provide a more personalised diagnostic approach in the framework of predictive, preventive and personalised medicine (PPPM). Methods Consecutive patients (n = 2417) referred for Rubidium-82 positron emission tomography were evaluated. PTP was calculated using the ESC 2013/2019 and ACC 2012/2021 guidelines, and a memetic pattern–based algorithm (MPA) was applied incorporating symptoms, vitals, ECG and biomarkers. Five PTP categories from very low to very high PTP were defined (i.e., < 5%, 5–15%, 15–50%, 50–85%, > 85%). Ischemia was defined as summed difference score (SDS) ≥ 2. Results Ischemia was present in 37.1%. The MPA model was most accurate to predict ischemia (AUC: 0.758, p < 0.001 compared to ESC 2013, 0.661; ESC 2019, 0.673; ACC 2012, 0.585; ACC 2021, 0.667). Using the < 5% threshold, the MPA’s sensitivity and negative predictive value to rule out ischemia were 99.1% and 96.4%, respectively. The model allocated patients more evenly across PTP categories, reduced the proportion of patients in the intermediate (15–85%) range by 29% (ACC 2012)–51% (ESC 2019), and was the only tool to correctly predict ischemia prevalence in the very low PTP category. Conclusion The MPA model enhanced ischemia testing according to the PPPM framework: The MPA model improved individual prediction of ischemia significantly and could safely exclude ischemia based on readily available variables without advanced testing (“predictive”). It reduced the proportion of patients in the intermediate PTP range. Therefore, it could be used as a gatekeeper to prevent patients from further unnecessary downstream testing, radiation exposure and costs (“preventive”). Consequently, the MPA model could transform ischemia testing towards a more personalised diagnostic algorithm (“personalised”).

Funder

University Basel Research Fund

Basel Cardiology Foundation

University of Basel

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Health Policy,Drug Discovery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3