Multi-risk factors joint prediction model for risk prediction of retinopathy of prematurity

Author:

Chen Shaobin,Zhao Xinyu,Wu Zhenquan,Cao Kangyang,Zhang Yulin,Tan Tao,Lam Chan-Tong,Xu Yanwu,Zhang GuomingORCID,Sun Yue

Abstract

Abstract Purpose Retinopathy of prematurity (ROP) is a retinal vascular proliferative disease common in low birth weight and premature infants and is one of the main causes of blindness in children. In the context of predictive, preventive and personalized medicine (PPPM/3PM), early screening, identification and treatment of ROP will directly contribute to improve patients’ long-term visual prognosis and reduce the risk of blindness. Thus, our objective is to establish an artificial intelligence (AI) algorithm combined with clinical demographics to create a risk model for ROP including treatment-requiring retinopathy of prematurity (TR-ROP) infants. Methods A total of 22,569 infants who underwent routine ROP screening in Shenzhen Eye Hospital from March 2003 to September 2023 were collected, including 3335 infants with ROP and 1234 infants with TR-ROP among ROP infants. Two machine learning methods of logistic regression and decision tree and a deep learning method of multi-layer perceptron were trained by using the relevant combination of risk factors such as birth weight (BW), gestational age (GA), gender, whether multiple births (MB) and mode of delivery (MD) to achieve the risk prediction of ROP and TR-ROP. We used five evaluation metrics to evaluate the performance of the risk prediction model. The area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUCPR) were the main measurement metrics. Results In the risk prediction for ROP, the BW + GA demonstrated the optimal performance (mean ± SD, AUCPR: 0.4849 ± 0.0175, AUC: 0.8124 ± 0.0033). In the risk prediction of TR-ROP, reasonable performance can be achieved by using GA + BW + Gender + MD + MB (AUCPR: 0.2713 ± 0.0214, AUC: 0.8328 ± 0.0088). Conclusions Combining risk factors with AI in screening programs for ROP could achieve risk prediction of ROP and TR-ROP, detect TR-ROP earlier and reduce the number of ROP examinations and unnecessary physiological stress in low-risk infants. Therefore, combining ROP-related biometric information with AI is a cost-effective strategy for predictive diagnostic, targeted prevention, and personalization of medical services in early screening and treatment of ROP.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3