Abstract
Abstract
Background
Risk prediction models can help identify individuals at high risk for type 2 diabetes. However, no such model has been applied to clinical practice in eastern China.
Aims
This study aims to develop a simple model based on physical examination data that can identify high-risk groups for type 2 diabetes in eastern China for predictive, preventive, and personalized medicine.
Methods
A 14-year retrospective cohort study of 15,166 nondiabetic patients (12–94 years; 37% females) undergoing annual physical examinations was conducted. Multivariate logistic regression and least absolute shrinkage and selection operator (LASSO) models were constructed for univariate analysis, factor selection, and predictive model building. Calibration curves and receiver operating characteristic (ROC) curves were used to assess the calibration and prediction accuracy of the nomogram, and decision curve analysis (DCA) was used to assess its clinical validity.
Results
The 14-year incidence of type 2 diabetes in this study was 4.1%. This study developed a nomogram that predicts the risk of type 2 diabetes. The calibration curve shows that the nomogram has good calibration ability, and in internal validation, the area under ROC curve (AUC) showed statistical accuracy (AUC = 0.865). Finally, DCA supports the clinical predictive value of this nomogram.
Conclusion
This nomogram can serve as a simple, economical, and widely scalable tool to predict individualized risk of type 2 diabetes in eastern China. Successful identification and intervention of high-risk individuals at an early stage can help to provide more effective treatment strategies from the perspectives of predictive, preventive, and personalized medicine.
Funder
Jiangsu Innovative and Entrepreneurial Talent Program
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry (medical),Health Policy,Drug Discovery
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献