Unraveling progression subtypes in people with Huntington’s disease

Author:

Raschka TamaraORCID,Li Zexin,Gaßner HeikoORCID,Kohl Zacharias,Jukic Jelena,Marxreiter FranzORCID,Fröhlich HolgerORCID

Abstract

Abstract Background Huntington’s disease (HD) is a progressive neurodegenerative disease caused by a CAG trinucleotide expansion in the huntingtin gene. The length of the CAG repeat is inversely correlated with disease onset. HD is characterized by hyperkinetic movement disorder, psychiatric symptoms, and cognitive deficits, which greatly impact patient’s quality of life. Despite this clear genetic course, high variability of HD patients’ symptoms can be observed. Current clinical diagnosis of HD solely relies on the presence of motor signs, disregarding the other important aspects of the disease. By incorporating a broader approach that encompasses motor as well as non-motor aspects of HD, predictive, preventive, and personalized (3P) medicine can enhance diagnostic accuracy and improve patient care. Methods Multisymptom disease trajectories of HD patients collected from the Enroll-HD study were first aligned on a common disease timescale to account for heterogeneity in disease symptom onset and diagnosis. Following this, the aligned disease trajectories were clustered using the previously published Variational Deep Embedding with Recurrence (VaDER) algorithm and resulting progression subtypes were clinically characterized. Lastly, an AI/ML model was learned to predict the progression subtype from only first visit data or with data from additional follow-up visits. Results Results demonstrate two distinct subtypes, one large cluster (n = 7122) showing a relative stable disease progression and a second, smaller cluster (n = 411) showing a dramatically more progressive disease trajectory. Clinical characterization of the two subtypes correlates with CAG repeat length, as well as several neurobehavioral, psychiatric, and cognitive scores. In fact, cognitive impairment was found to be the major difference between the two subtypes. Additionally, a prognostic model shows the ability to predict HD subtypes from patients’ first visit only. Conclusion In summary, this study aims towards the paradigm shift from reactive to preventive and personalized medicine by showing that non-motor symptoms are of vital importance for predicting and categorizing each patients’ disease progression pattern, as cognitive decline is oftentimes more reflective of HD progression than its motor aspects. Considering these aspects while counseling and therapy definition will personalize each individuals’ treatment. The ability to provide patients with an objective assessment of their disease progression and thus a perspective for their life with HD is the key to improving their quality of life. By conducting additional analysis on biological data from both subtypes, it is possible to gain a deeper understanding of these subtypes and uncover the underlying biological factors of the disease. This greatly aligns with the goal of shifting towards 3P medicine.

Funder

Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3