Two-particle scattering from finite-volume quantization conditions using the plane wave basis

Author:

Meng LuORCID,Epelbaum E.

Abstract

Abstract We propose an alternative approach to Lüscher’s formula for extracting two-body scattering phase shifts from finite volume spectra with no reliance on the partial wave expansion. We use an effective-field-theory-based Hamiltonian method in the plane wave basis and decompose the corresponding matrix elements of operators into irreducible representations of the relevant point groups. The proposed approach allows one to benefit from the knowledge of the long-range interaction and avoids complications from partial wave mixing in a finite volume. We consider spin-singlet channels in the two-nucleon system and pion-pion scattering in the ρ-meson channel in the rest and moving frames to illustrate the method for non-relativistic and relativistic systems, respectively. For the two-nucleon system, the long-range interaction due to the one-pion exchange is found to make the single-channel Lüscher formula unreliable at the physical pion mass. For S-wave dominated states, the single-channel Lüscher method suffers from significant finite-volume artifacts for a L = 3 fm box, but it works well for boxes with L > 5 fm. However, for P-wave dominated states, significant partial wave mixing effects prevent the application of the single-channel Lüscher formula regardless of the box size (except for the near-threshold region). Using a toy model to generate synthetic data for finite-volume energies, we show that our effective-field-theory-based approach in the plane wave basis is capable of a reliable extraction of the phase shifts. For pion-pion scattering, we employ a phenomenological model to fit lattice QCD results at the physical pion mass. The extracted P-wave phase shifts are found to be in a good agreement with the experimental results.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite-volume scattering on the left-hand cut;Journal of High Energy Physics;2024-08-08

2. Toward the quark mass dependence of Tcc+ from lattice QCD;Physical Review D;2024-05-20

3. Lüscher equation with long-range forces;Journal of High Energy Physics;2024-05-14

4. Solving the left-hand cut problem in lattice QCD: Tcc(3875)+ from finite volume energy levels;Physical Review D;2024-04-30

5. 50 Years of quantum chromodynamics;The European Physical Journal C;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3