Abstract
Abstract
Recently we showed how, in two-dimensional scalar theories, one-loop threshold diagrams can be cut into the product of one or more tree-level diagrams [1]. Using this method on the ADE series of Toda models, we computed the double- and single-pole coefficients of the Laurent expansion of the S-matrix around a pole of arbitrary even order, finding agreement with the bootstrapped results. Here we generalise the cut method explained in [1] to multiple loops and use it to simplify large networks of singular diagrams. We observe that only a small number of cut diagrams survive and contribute to the expected bootstrapped result, while most of them cancel each other out through a mechanism inherited from the tree-level integrability of these models. The simplification mechanism between cut diagrams inside networks is reminiscent of Gauss’s theorem in the space of Feynman diagrams.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献