Abstract
Abstract
We examine a strong/weak duality between a Heisenberg coset of a theory with $$ \mathfrak{sl} $$
sl
n subregular $$ \mathcal{W} $$
W
-algebra symmetry and a theory with a $$ \mathfrak{sl} $$
sl
n|1-structure. In a previous work, two of the current authors provided a path integral derivation of correlator correspondences for a series of generalized Fateev-Zamolodchikov-Zamolodchikov (FZZ-)duality. In this paper, we derive correlator correspondences in a similar way but for a different series of generalized duality. This work is a part of the project to realize the duality of corner vertex operator algebras proposed by Gaiotto and Rapčák and partly proven by Linshaw and one of us in terms of two dimensional conformal field theory. We also examine another type of duality involving an additional pair of fermions, which is a natural generalization of the fermionic FZZ-duality. The generalization should be important since a principal $$ \mathcal{W} $$
W
-superalgebra appears as its symmetry and the properties of the superalgebra are less understood than bosonic counterparts.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献