Abstract
Abstract
The order from quantum disorders (OFQD) phenomenon is well-known and ubiquitous in particle physics and frustrated magnetic systems. Typically, OFQD transfers a spurious Goldstone mode into a pseudo-Goldstone mode with a tiny gap. Here, we report an opposite phenomenon: OFQD transfers a spurious quadratic mode into a true linear Goldstone mode with a very small velocity (named slow-Goldstone mode). This new phenomenon is demonstrated in an interacting bosonic system subjected to an Abelian flux. We develop a new and systematic OFQD analysis to determine the true quantum ground state and the whole excitation spectrum. In the weak-coupling limit, the superfluid ground state has a 4-sublattice 90° coplanar spin structure, which supports 4 linear Goldstone modes with 3 different velocities. One of which is generated by the OFQD is much softer than the other 3 Goldstone modes, so it can be easily detected in the cold atom or photonic experiments. In the strong-coupling limit, the ferromagnetic Mott ground state with a true quadratic Goldstone mode. We speculate that there could be some topological phases intervening between the two symmetry broken states. These novel phenomena may be observed in the current cold-atom or photonic experiments subjected to an Abelian flux at the weak coupling limit where the heatings may be well under control. Possible connections to Coleman-Weinberg potential in particle physics, 1/N expansion of Sachdev-Ye-Kitaev models and zero temperature quantum black hole entropy are outlined.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics