Origin of nontopological soliton dark matter: solitosynthesis or phase transition

Author:

Bai Yang,Lu Sida,Orlofsky Nicholas

Abstract

Abstract This work demonstrates that nontopological solitons with large global charges and masses, even above the Planck scale, can form in the early universe and dominate the dark matter abundance. In solitosynthesis, solitons prefer to grow as large as possible under equilibrium dynamics when an initial global charge asymmetry is present. Their abundance is set by when soliton formation via particle fusion freezes out, and their charges are set by the time it takes to accumulate free particles. This work improves the estimation of both quantities, and in particular shows that much larger-charged solitons form than previously thought. The results are estimated analytically and validated numerically by solving the coupled Boltzmann equations. Without solitosynthesis, phase transitions can still form solitons from particles left inside false-vacuum pockets and determine their present-day abundance and properties. Even with zero charge asymmetry, solitons formed in this way can have very large charges on account of statistical fluctuations in the numbers of (anti)particles inside each pocket.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gravitational waves from more attractive dark binaries;Journal of Cosmology and Astroparticle Physics;2024-08-01

2. The resurgence of the G(2) group for the strong sector and the emergence of dark matter;Nuclear Physics B;2024-07

3. Compact objects in and beyond the standard model from nonperturbative vacuum scalarization;Physical Review D;2024-05-06

4. Slowly rotating Q-balls;The European Physical Journal C;2024-04-07

5. Dark exoplanets;Physical Review D;2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3