Abstract
Abstract
We explore the analytic structure of the non-perturbative S-matrix in arguably the simplest family of massive non-integrable quantum field theories: the Ising field theory (IFT) in two dimensions, which may be viewed as the Ising CFT deformed by its two relevant operators, or equivalently, the scaling limit of the Ising model in a magnetic field. Our strategy is that of collider physics: we employ Hamiltonian truncation method (TFFSA) to extract the scattering phase of the lightest particles in the elastic regime, and combine it with S-matrix bootstrap methods based on unitarity and analyticity assumptions to determine the analytic continuation of the 2 → 2 S-matrix element to the complex s-plane. Focusing primarily on the “high temperature” regime in which the IFT interpolates between that of a weakly coupled massive fermion and the E8 affine Toda theory, we will numerically determine 3-particle amplitudes, follow the evolution of poles and certain resonances of the S-matrix, and exclude the possibility of unknown wide resonances up to reasonably high energies.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference29 articles.
1. A. Zamolodchikov, Ising Spectroscopy II: Particles and poles at T > Tc, arXiv:1310.4821 [INSPIRE].
2. P. Fonseca and A. Zamolodchikov, Ising spectroscopy. I. Mesons at T < Tc, hep-th/0612304 [INSPIRE].
3. A.B. Zamolodchikov, Integrals of Motion and S Matrix of the (Scaled) T = Tc Ising Model with Magnetic Field, Int. J. Mod. Phys. A 4 (1989) 4235 [INSPIRE].
4. T.J. Hollowood and P. Mansfield, Rational Conformal Field Theories At, and Away From, Criticality as Toda Field Theories, Phys. Lett. B 226 (1989) 73 [INSPIRE].
5. H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Affine Toda Field Theory and Exact S Matrices, Nucl. Phys. B 338 (1990) 689 [INSPIRE].
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献