An asymmetric SIMP dark matter model

Author:

Ho Shu-Yu

Abstract

Abstract In this paper, we construct the first asymmetric strongly interacting massive particles (SIMP) dark matter (DM) model, where a new vector-like fermion and a new complex scalar both having nonzero chemical potentials can be asymmetric DM particles. After the spontaneous breaking of a U(1)D dark gauge symmetry, these two particles can have accidental ℤ4 charges making them stable. By adding one more complex scalar as a mediator between the SIMP DM, the relic density of DM is determined by 3 → 2 and two-loop induced 2 → 2 annihilations in this model. On the other hand, the SIMP DM can maintain kinetic equilibrium with the thermal bath until the DM freeze-out temperature via the new gauge interaction. Interestingly, this model can have a bouncing effect on DM, whereby the DM number density rises after the chemical freeze-out of DM. With this effect, the prediction of the DM self-interacting cross section in this model can be consistent with astrophysical observations, and the ratio of the DM energy density to the baryonic matter energy density can be explained by primordial asymmetries. We also predict the DM-electron elastic scattering cross section that can be used to test this model in future projected experiments.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revisiting big bang nucleosynthesis with a new particle species: effect of co-annihilation with nucleons;The European Physical Journal C;2024-06-21

2. Light thermal self-interacting dark matter in the shadow of non-standard cosmology;Journal of Cosmology and Astroparticle Physics;2024-04-01

3. Bouncing pNGB dark matter via a fermion dark matter;Journal of Cosmology and Astroparticle Physics;2024-03-01

4. Bouncing dark matter;Physical Review D;2024-01-31

5. Exponential enhancement of dark matter freezeout abundance;SciPost Physics Proceedings;2023-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3