Author:
Iizuka Norihiro,Ishibashi Akihiro,Maeda Kengo
Abstract
Abstract
We consider averaged null energy conditions (ANEC) for strongly coupled quantum field theories in even (two and four) dimensional curved spacetimes by applying the no-bulk-shortcut principle in the context of the AdS/CFT duality. In the same context but in odd-dimensions, the present authors previously derived a conformally invariant averaged null energy condition (CANEC), which is a version of the ANEC with a certain weight function for conformal invariance. In even-dimensions, however, one has to deal with gravitational conformal anomalies, which make relevant formulas much more complicated than the odd-dimensional case. In two-dimensions, we derive the ANEC by applying the no-bulk-shortcut principle. In four-dimensions, we derive an inequality which essentially provides the lower-bound for the ANEC with a weight function. For this purpose, and also to get some geometric insights into gravitational conformal anomalies, we express the stress-energy formulas in terms of geometric quantities such as the expansions of boundary null geodesics and a quasi-local mass of the boundary geometry. We argue when the lowest bound is achieved and also discuss when the averaged value of the null energy can be negative, considering a simple example of a spatially compact universe with wormhole throat.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献