Coherent scattering and macroscopic coherence: implications for neutrino, dark matter and axion detection

Author:

Akhmedov Evgeny,Arcadi Giorgio,Lindner Manfred,Vogl Stefan

Abstract

Abstract We study the question of whether coherent neutrino scattering can occur on macroscopic scales, leading to a significant increase of the detection cross section. We concentrate on radiative neutrino scattering on atomic electrons (or on free electrons in a conductor). Such processes can be coherent provided that the net electron recoil momentum, i.e. the momentum transfer from the neutrino minus the momentum of the emitted photon, is sufficiently small. The radiative processes is an attractive possibility as the energy of the emitted photons can be as large as the momentum transfer to the electron system and therefore the problem of detecting extremely low energy recoils can be avoided. The requirement of macroscopic coherence severely constrains the phase space available for the scattered particle and the emitted photon. We show that in the case of the scattering mediated by the usual weak neutral current and charged current interactions this leads to a strong suppression of the elementary cross sections and therefore the requirement of macroscopic coherence results in a reduction rather than an increase of the total detection cross section. However, for the νe scattering mediated by neutrino magnetic or electric dipole moments coherence effects can actually increase the detection rates. Effects of macroscopic coherence can also allow detection of neutrinos in 100 eV — a few keV energy range, which is currently not accessible to the experiment. A similar coherent enhancement mechanism can work for relativistic particles in the dark sector, but not for the conventionally considered non-relativistic dark matter.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference45 articles.

1. COHERENT collaboration, D. Akimov et al., Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].

2. COHERENT collaboration, D. Akimov et al., COHERENT Collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering, arXiv:1804.09459 [INSPIRE].

3. D.Z. Freedman, Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current, Phys. Rev. D 9 (1974) 1389 [INSPIRE].

4. D.Z. Freedman, D.N. Schramm and D.L. Tubbs, The Weak Neutral Current and Its Effects in Stellar Collapse, Ann. Rev. Nucl. Part. Sci. 27 (1977) 167 [INSPIRE].

5. W. Maneschg, The Status of CONUS, talk given at the XXVIIIth International Conference on Neutrino Physics and Astrophysics “Neutrino 2018”, Heidelberg Germany (2018), https://zenodo.org/record/1286927#.WzCpdxx9hB8.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Limits on the cosmic neutrino background;Journal of Cosmology and Astroparticle Physics;2023-01-01

2. A statistical analysis of the COHERENT data and applications to new physics;Journal of High Energy Physics;2021-04

3. Concept of Coherence in Neutrino and Antineutrino Scattering off Nuclei;Physics of Particles and Nuclei;2021-01

4. Dark matter interpretation of excesses in multiple direct detection experiments;Physical Review D;2020-07-20

5. Theory of elastic neutrino-electron scattering;Physical Review D;2020-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3