Abstract
Abstract
We show that exactly marginal operators of Supersymmetric Conformal Field Theories (SCFTs) with four supercharges cannot obtain a vacuum expectation value at a generic point on the conformal manifold. Exactly marginal operators are therefore nilpotent in the chiral ring. This allows us to associate an integer to the conformal manifold, which we call the nilpotency index of the conformal manifold. We discuss several examples in diverse dimensions where we demonstrate these facts and compute the nilpotency index.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference50 articles.
1. J.L. Cardy, Continuously Varying Exponents and the Value of the Central Charge, J. Phys. A 20 (1987) L891 [INSPIRE].
2. M.R. Gaberdiel, A. Konechny and C. Schmidt-Colinet, Conformal perturbation theory beyond the leading order, J. Phys. A 42 (2009) 105402 [arXiv:0811.3149] [INSPIRE].
3. Z. Komargodski and D. Simmons-Duffin, The Random-Bond Ising Model in 2.01 and 3 Dimensions, J. Phys. A 50 (2017) 154001 [arXiv:1603.04444] [INSPIRE].
4. V. Bashmakov, M. Bertolini and H. Raj, On non-supersymmetric conformal manifolds: field theory and holography, JHEP 11 (2017) 167 [arXiv:1709.01749] [INSPIRE].
5. C. Behan, Conformal manifolds: ODEs from OPEs, JHEP 03 (2018) 127 [arXiv:1709.03967] [INSPIRE].
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献