Black holes in Klein space

Author:

Crawley ErinORCID,Guevara Alfredo,Miller Noah,Strominger Andrew

Abstract

Abstract The analytic continuation of the general signature (1, 3) Lorentzian Kerr-Taub-NUT black holes to signature (2, 2) Kleinian black holes is studied. Their global structure is characterized by a toric Penrose diagram resembling their Lorentzian counterparts. Kleinian black holes are found to be self-dual when their mass and NUT charge are equal for any value of the Kerr rotation parameter a. Remarkably, it is shown that the rotation a can be eliminated by a large diffeomorphism; this result also holds in Euclidean signature. The continuation from Lorentzian to Kleinian signature is naturally induced by the analytic continuation of the S-matrix. Indeed, we show that the geometry of linearized black holes, including Kerr-Taub-NUT, is captured by (2, 2) three-point scattering amplitudes of a graviton and a massive spinning particle. This stands in sharp contrast to their Lorentzian counterparts for which the latter vanishes kinematically and enables a direct link to the S-matrix.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference107 articles.

1. J.W. Barrett, G.W. Gibbons, M.J. Perry, C.N. Pope and P. Ruback, Kleinian geometry and the N = 2 superstring, Int. J. Mod. Phys. A 9 (1994) 1457 [hep-th/9302073] [INSPIRE].

2. H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].

3. T.R. Taylor, A Course in Amplitudes, Phys. Rept. 691 (2017) 1 [arXiv:1703.05670] [INSPIRE].

4. F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].

5. F. Cachazo and E.Y. Yuan, Are Soft Theorems Renormalized?, arXiv:1405.3413 [INSPIRE].

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3