Higgs relaxation after inflation

Author:

Fonseca Nayara,Morgante Enrico,Servant Géraldine

Abstract

Abstract We show that the mechanism of cosmological relaxation of the electroweak scale can take place independently of the inflation mechanism, thus relieving burdens from the original relaxion proposal. What eventually stops the (fast-rolling) relaxion field during its cosmological evolution is the production of particles whose mass is controlled by the Higgs vacuum expectation value. We first show that Higgs particle production does not work for that purpose as the Higgs field does not track the minimum of its potential in the regime where Higgs particles get efficiently produced through their coupling to the relaxion. We then focus on gauge boson production. We provide a detailed analysis of the scanning and stopping mechanism and determine the parameter space for which the relaxion mechanism can take place after inflation, while being compatible with cosmological constraints, such as the relaxion dark matter overabundance and Big Bang Nucleosynthesis. We find that the cutoff scale can be as high as two hundreds of TeV. In this approach, the relaxion sector is responsible for reheating the visible sector. The stopping barriers of the periodic potential are large and Higgs-independent, facilitating model-building. The allowed relaxion mass ranges from 200 MeV up to the weak scale. In this scenario, the relaxion field excursion is subplanckian, and is thus many orders of magnitude smaller than in the original relaxion proposal.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Solutions to the Gauge Hierarchy Problem;Annual Review of Nuclear and Particle Science;2023-09-25

2. The stochastic relaxion;Journal of High Energy Physics;2023-06-19

3. From axion quality and naturalness problems to a high-quality ZN QCD relaxion;Physical Review D;2023-06-09

4. Attracting the electroweak scale to a tachyonic trap;Physical Review D;2023-04-19

5. Spontaneous symmetry breaking and massive photons from a Fresnel-type potential;Pramana;2022-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3