Abstract
Abstract
We construct a black hole geometry dual to a (2+1)-dimensional defect in an ambient (3+1)-dimensional gauge theory at non-zero temperature and quark density. The geometry is a solution to the equations of motion of type IIB supergravity with brane sources, a low energy limit of an intersection of stacks of color D3-branes and flavor D5-branes. We consider the case in which the number of D5-branes is large and they can be homogeneously distributed along the directions orthogonal to the defect, creating in this way a multilayer structure. The quark density is generated by exciting a gauge field in the worldvolume of the dynamic brane sources. We study the thermodynamics of the anisotropic black hole and compute the energy density of the dual theory, as well as the pressures and speeds of sound along the directions parallel and orthogonal to the defect. We also calculate transport coefficients in the shear channel, quark-antiquark potentials, and the entanglement entropies for slab subregions. These analyses give us a good overview on how the degrees of freedom are spread, entangled, and behave in this unquenched system in the deconfining phase at strong coupling.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Flavors of entanglement;Journal of High Energy Physics;2024-07-30
2. Breaking rotations without violating the KSS viscosity bound;Journal of High Energy Physics;2023-07-03
3. Holographic Floquet states in low dimensions (II);Journal of High Energy Physics;2022-12-05