Disks globally maximize the entanglement entropy in 2 + 1 dimensions

Author:

Bueno Pablo,Casini Horacio,Andino Oscar LassoORCID,Moreno Javier

Abstract

Abstract The entanglement entropy corresponding to a smooth region in general three-dimensional CFTs contains a constant universal term, −FSEE. For a disk region, F|diskF0 coincides with the free energy on 𝕊3 and provides an RG-monotone for general theories. As opposed to the analogous quantity in four dimensions, the value of F generally depends in a complicated (and non-local) way on the geometry of the region and the theory under consideration. For small geometric deformations of the disk in general CFTs as well as for arbitrary regions in holographic theories, it has been argued that F is precisely minimized by disks. Here, we argue that F is globally minimized by disks with respect to arbitrary regions and for general theories. The proof makes use of the strong subadditivity of entanglement entropy and the geometric fact that one can always place an osculating circle within a given smooth entangling region. For topologically non-trivial entangling regions with nB boundaries, the general bound can be improved to F ≥ nBF0. In addition, we provide accurate approximations to F valid for general CFTs in the case of elliptic regions for arbitrary values of the eccentricity which we check against lattice calculations for free fields. We also evaluate F numerically for more general shapes in the so-called “Extensive Mutual Information model”, verifying the general bound.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3