Study of the Roberge-Weiss phase caused by external uniform classical electric field using lattice QCD approach

Author:

Yang Ji-Chong,Chang Xiao-Ting,Chen Jian-XingORCID

Abstract

Abstract The effect of an external electric field on the quark matter is an important question due to the presence of strong electric fields in heavy ion collisions. In the lattice QCD approach, the case of a real electric field suffers from the ‘sign problem’, and a classical electric field is often used similar as the case of chemical potential. Interestingly, in axial gauge a uniform classical electric field actually can correspond to an inhomogeneous imaginary chemical potential that varies with coordinate. On the other hand, with imaginary chemical potential, Roberge-Weiss (R-W) phase transition occurs. In this work, the case of a uniform classical electric field is studied by using lattice QCD approach, with the emphasis on the properties of the R-W phase. Novel phenomena show up at high temperatures. It is found that, the chiral condensation oscillates with z at high temperatures, and so is the absolute value of the Polyakov loop. It is verified that the charge density also oscillates with z at high temperatures. The Polyakov loop can be described by an ansatz Ap + Σq=u,dCq exp (LτQqiazeEz), where Ap is a complex number and Cd> 0, Cu ≥ 0 are real numbers that are fitted for different temperatures and electric field strengths. As a consequence, the behavior of the phase of Polyakov loop is different depending on whether the Polyakov loop encloses the origin, which implies a possible phase transition.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3