Conformally invariant boundary conditions in the antiferromagnetic Potts model and the SL(2, ℝ)/U(1) sigma model

Author:

Robertson Niall F.,Jacobsen Jesper LykkeORCID,Saleur Hubert

Abstract

Abstract We initiate a study of the boundary version of the square-lattice Q-state Potts antiferromagnet, with Q ∈ [0, 4] real, motivated by the fact that the continuum limit of the corresponding bulk model is a non-compact CFT, closely related with the SL(2, ℝ) k /U(1) Euclidian black-hole coset model. While various types of conformal boundary conditions (discrete and continuous branes) have been formally identified for the the SL(2, ℝ) k /U(1) coset CFT, we are only able in this work to identify conformal boundary conditions (CBC) leading to a discrete boundary spectrum. The CBC we find are of two types. The first is free boundary Potts spins, for which we confirm an old conjecture for the generating functions of conformal levels, and show them to be related to characters in a non-linear deformation of the W algebra. The second type of CBC — which corresponds to restricting the values of the Potts spins to a subset of size Q 1, or its complement of size Q − Q 1, at alternating sites along the boundary — is new, and turns out to be conformal in the antiferromagnetic case only. In the following, we refer to these new boundary conditions as “alt” boundary conditions. Using algebraic and numerical techniques, we show that the corresponding spectrum generating functions produce all the characters of discrete representations for the coset CFT. The normalizability bounds of the associated discrete states in the coset CFT are found to have a simple interpretation in terms of boundary phase transitions in the lattice model. In the two-boundary case, with two distinct alt conditions, we obtain similar results, at least in the case when the corresponding boundary condition changing operator also inserts a number of defect lines. For $$ \sqrt{Q} $$ Q = 2 $$ \cos \frac{\pi }{k} $$ cos π k , with k ≥ 3 integer, we show also how our boundary conditions can be reformulated in terms of a RSOS height model. The spectrum generating functions are then identified with string functions of the compact SU(2) k−2 /U(1) parafermion theory (with symmetry Z k−2). The new alt conditions are needed to cover all the string functions. We provide an algebraic proof that the two-boundary alt conditions correctly produce the fusion rules of string functions. We expose in detail the special case of Q = 3 and its link with three-colourings of the square lattice and a corresponding boundary six-vertex model. Finally, we discuss the case of an odd number of sites (in the loop model) and the relation with wired boundary conditions (in the spin model). In this case the RSOS restriction produces the disorder operators of the parafermion theory.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3