Probing supersymmetric black holes with surface defects

Author:

Chen YimingORCID,Heydeman Matthew,Wang Yifan,Zhang Mengyang

Abstract

Abstract It has long been conjectured that the large N deconfinement phase transition of $$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills corresponds via AdS/CFT to the Hawking-Page transition in which black holes dominate the thermal ensemble, and quantitative evidence of this has come through the recent matching of the superconformal index of $$ \frac{1}{16} $$ 1 16 -BPS states to the supersymmetric black hole entropy. We introduce the half-BPS Gukov-Witten surface defect as a probe of the superconformal index, which also serves as an order parameter for the deconfinement transition. This can be studied directly in field theory as a modification of the usual unitary matrix model or in the dual description as a D3-brane probe in the background of a (complex) supersymmetric black hole. Using a saddle point approximation, we determine our defect index in the large N limit as a simple function of the chemical potentials and show independently that it is reproduced by the renormalized action of the brane in the black hole background. Along the way, we also comment on the Cardy limit and the thermodynamics of the D3-brane in the generalized ensemble. The defect index sharply distinguishes between the confining and the deconfining phases of the gauge theory and thus is a supersymmetric non-perturbative order parameter for these large N phase transitions which deserves further investigation. Finally, our work provides an example where the properties of a black hole coupled to an external system can be analyzed precisely.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Black hole/black ring transition;Journal of High Energy Physics;2024-01-31

2. Modified supersymmetric indices in AdS3/CFT2;Journal of High Energy Physics;2024-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3