The classical cosmological constant of open-closed string field theory

Author:

Maccaferri CarloORCID,Vošmera JakubORCID

Abstract

Abstract We consider deformations of D-brane systems induced by a change in the closed string background in the framework of bosonic open-closed string field theory, where it is possible to unambiguously tame infrared divergences originating from both open and closed string degenerations. A closed string classical solution induces a tadpole for the open strings which shifts the open string vacuum and generates a cosmological constant composed of two terms: one which is directly related to the closed string solution and the other which depends on the open string vacuum shift. We show that only the sum of these two terms is invariant under closed SFT gauge transformations and therefore is an observable. We conjecture that this observable is universally proportional to the shift in the world-sheet disk partition function between the starting D-brane in undeformed background and the final D-brane in deformed background, which typically includes also a change in the string coupling constant. We test the conjecture by considering a perturbative closed string solution describing deformations of a Narain compactification and, from the SFT cosmological constant, we reproduce the expected shift in the g-function of various D-branes living in the compactification. In doing this we are also able to identify a surprising change in the string coupling constant at second order in the deformation.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyperbolic string tadpole;SciPost Physics;2023-12-13

2. Open-closed string field theory in the large N limit;Journal of High Energy Physics;2023-09-19

3. The nilpotent structure of open-closed string field theory;Journal of High Energy Physics;2023-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3